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Prior work

Our work
Affinity analysis improves
network performance predictions

Affinity effects and limits are network specific

Major findings

Characterizing affinity is possible

Changes in affinity produce network variations

Wong, et al. (2000): Multicast
Radoslavov, et al. (2001): Replica placement
He and Papadopolous (2000): Routing services



Open questions

2a. How does network topology affect affinity selection?

1. How should we analyze a member group to determine its affinity level?

3. Can affinity analysis refine network performance predictions?

β ?

2b. Are extreme affinity and disaffinity network-specific boundaries?

Goal: Describe affinity level with a single number.

Can we do better than classification by
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Between 5,000 and 30,000 nodes

Measured

Generated

Canonical

Mercator , NLANR, UCB, UMich

Power law, Hierarchy, Random, Smallword

2D, K-ary, Ring

Average degree between 2.00 and 6.00

Member groups sized between 0.1% and 10% of network size

Affinity levels between       = 15 and       = –15β β

2. Network impact on affinity

Networks
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3. Case study: Multicast efficiency

Chalmers and 
Almeroth (2001)
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ba += λδ

ba += βδ

ii ba += λδ

ii ba += βδ

r2 = 0.5618

r2 = 0.2375

r2 = 0.8178

r2 = 0.9208
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Going forward

Include affinity selection as part of simulations

Represents realistic scenarios

Variations in network performance

Be mindful of network topology

Examine actual affinity of subgroups

λ

Develop an affinity utility

Constraints on affinity selection

Refine and develop other metrics

Analogous to topology generators

Aid with selection and analysis


